skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conte, Joel_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The UC San Diego large high‐performance outdoor shake table (LHPOST), which was commissioned on October 1, 2004 as a shared‐use experimental facility of the National Science Foundation (NSF) Network for Earthquake Engineering Simulation (NEES) program, was upgraded from its original one degree‐of‐freedom (LHPOST) to a six‐degree‐of‐freedom configuration (LHPOST6) between October 2019 and April 2022. A mechanics‐based numerical model of the LHPOST6 able to capture the dynamics of the upgraded 6‐DOF shake table system under bare table condition is presented in this paper. The model includes: (i) a rigid body kinematic model that relates the platen motion to the motions of the components attached to the platen, (ii) a hydraulic dynamic model that calculates the hydraulic actuator forces based on all fourth‐stage servovalve spool positions, (iii) a hold‐down strut model that determines the pull‐down forces produced by the three hold‐down struts, (iv) Bouc‐Wen models utilized to represent the dissipative forces in the shake table system, and (v) a rigid body dynamic model borrowed from robotic analysis governing the translational and rotational motions of the platen subjected to the forces from the various components attached to the platen. Extensive validation against experimental data shows excellent agreement for tri‐axial and six‐axial earthquake shake table tests. This validated model can be coupled with finite element models of test specimens to study the interaction between the shake table system and the specimens, and it offers potential for enhancing motion tracking performance through off‐line controller tuning or advanced control algorithm development. 
    more » « less